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TECHNICAL NOTE D-652

THEORETICAL EVALUATION OF THE PRESSURES, FORCES, AND
MOMENTS AT HYPERSONIC SPEEDS ACTING ON ARBITRARY
BODIES OF REVOLUTION UNDERGOING SEPARATE AND
COMBINED ANGLE-OF-ATTACK
AND PITCHING MOTIONS

By Kenneth Margolis
SUMMARY

Equations based on Newtonian impact theory have been derived and a
computational procedure developed with the aid of several design-type
charts which enable the determination of the aerodynamic forces and
moments acting on arbitrary bodies of revolution undergoing either sepa-
rate or combined angle-of-attack and pitching motions. Bodies with
axially increasing and decreasing cross-sectional area distributions are
considered; nose shapes may be sharp, blunt, or flat faced. The analysis
considers variations in angle of attack from -90° to 90° and allows for
both positive and negative pitching rates of arbitrary magnitude. The
results are also directly applicable to bodies in either separate or
combined sideslip and yawing maneuvers.

INTRODUCTION

The purpose of the present paper is to develop a method based pri-
marily on Newtonian impact theory for calculating the aerodynamic forces
at hypersonic speeds acting on arbitrary bodies of revolution undergoing
either separate or combined angle-of-attack and pitching motions. Bodies
with axially decreasing as well as axially increasing cross-sectional
area distributions are considered in the analysis. Nose shapes may be
sharp, blunt, or flat faced, and forebody shielding effects on flared
aft regions are taken into account. The angle-of-attack range considered
is -90° £ o € 90° and pitching velocities, both positive and negative,
of arbitrary magnitude are allowed. Thus, the formulation of the problem
is broad in scope and allows for general application of the results
obtained to missiles and aircraft configurations of current interest for
8 wide range of flight conditions.



Equations are derived and a computational procedure developed with
the use of several design-type charts which permit the calculation of
the normal and axial forces and pitching moment for any desired body.
Some consideration is also given the problem of modifying the results
obtained to account for the effects of Mach number variation and differ-
ences in the ratio of specific heats.

Although the pitching motion referred to herein is a steady-state
effect, it is known that the impact theory when applied to uniformly
accelerated motion, that is, & effect, predicts a zero resulting force
and moment. Therefore, the analysis and results of the present investi-
gation can be considered to include the unsteady pitching condition for
low-frequency oscillations. Because of symmetry considerations, the
results are alsoc directly applicable to arbitrary bodies of revolution
undergoing either separate or combined sideslip and yawing motions, and
low-frequency lateral oscillations.

SYMBOLS
X,T,m cylindrical coordinates (see sketch (a))
¥,z rectangular coordinates (see sketch (d))
R(x) body radius in r,w plane (see sketch (a))
R'(x) axial rate of change of body radius, d?ix)
Rq body radius at nose
Ry, radius of cylindrical section (see sketch (b))
M Mach number
4 ratio of specific heats
P local pressure
Py free-stream pressure
Ve free-stream velocity

p free-stream density

e
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coefficient of pressure difference, I_~—7§
20w

angle of attack
angular pitching velocity (see sketch (a))

local normal component of resultant velocity
reference area used for nondimensionalizing purposes
reference length used for nondimensionalizing purposes
body length

Normal force

1
§ pwvoozs r

normal-force coefficient,

1ift coefficient,

Axial force

1 2
§p°°Voo SI'

axial-force coefficient,

Drag
drag coefficient,

'_-l

a pwvooesr

n

Pitching moment
1 2
5- DOOVOO Sr Zr

pitching-moment coefficient,

location of pitch axis and moment reference, measured
positively rearward from nose (see sketch (a))

function defined by equation (4)

maximum percent shielding due to forebody, defined by
equation (25)

meximum cross-sectional periphery at a given axial station

shielded by forebody (see sketch (c))
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13 [G(x))
I [G(x)]
I3 [G(x)]
1{a(x)] |

J1 [G(X)T
s [a(x)]
33]6(x)]
3 [a(x)]

J

ACYy
ACy
ACy
a1[a(x)]
a3 [a(x)]

Superscript:

*

angle subtended by periphery s (see sketch (c))

angle used for evaluating forebody-shielding effect,

lwbl = %(ﬂ - 8), (see sketch (c))

used as integration limits to denote portion of body
length 1

functions associated with evaluation of axial force
(see eqs. (10) to (12) and (16) to (18))

functions associated with evaluation of normal force and
pitching moment (see egs. (13) to (15) and (16) to (18))

increments or decrements in previously defined quantities

parameter used in evaluating flat-faced nose contributions,
cos
Ro

A

denotes basic contribution plus forebody-shielding effect
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Subscripts:
f denotes contribution of flat-faced nose section
t denotes total contributions from all sources

Stability derivatives are discussed in the appendix and are defined
therein.

ANATYSIS

The Newtonian impact theory is strictly applicable at Mach numbers
approaching infinity and for values of 7, the ratio of specific heats,
approaching unity. Studies of this approximate theory and simple modi-
fications thereof (for example, refs. 1 and 2) have shown the Newtonian
concept to be a valuable tool in predicting general trends and in many
instances yielding quantitative results of acceptable accuracy when
applied to high supersonic and hypersonic speeds.

Basically, the theory assumes that the shock wave lies on the body
surface and that the flow, upon striking the body, loses all of its
momentum in the direction normal to the body surface and continues along
the surface with its tangential component of momentum unchanged. Fur-
thermore, only those surface areas under direct impact from the air-
stream, that is, surface areas which "see" the flow, will experience a
pressure force. The Newtonian approximation does not predict any effect
on those surface areas facing away or "shielded" from the flow; in these
regions the flow is assumed to be completely separated and the local
pressure is equal to the free-stream pressure.

The Newtonian hypothesis yields a local pressure coefficient which
may be expressed as (see refs. 2 and 3)

P -D v\

- N

Cp = —=2 = 2 — 1
p =1 <Vm> (1)

2
‘2' pooVoo

where P?  Poos and V, are the free-stream density, pressure, and

velocity, respectively, and where p and Vy are the local pressure
and local normal component of resultant velocity, respectively. It is
to be noted that equation (1) is applicable only to those surface areas
that face the flow; for surface areas that are shielded from the flow,
p=p, and Cp =0.



Consider the body of revolution defined with respect to the cylindri-
cal coordinate system shown in the following sketch.

w==X
2

r,w=%

Sketch (a)

The origin is located at the apex or in the case of a body with a flat
face, at the intersection of the body axis of symmetry (x-axis) and the
face plane. The axis of pitch and moment reference is located at

= Xo measured positively rearward; positive sense of rotation is

nose-up as indicated.

The local normal velocity Vi resulting from a combined angle-of-
attack and pitching motion (-g-g a < %; ~0 < q < w) applicable to sur-
face areas that are subject to compression flow, that is, that "see" the
flow has been derived (refs. 3 and 4) and is expressible in the following

form:

Vy(w,x) = Vo COS @ {%'(x) - tan @ sin @ - 25209 sino Xxo + R(x)R' (xiy

Vo CcOs a
1+ R' (x)

where R(x) and R'(x) define the body shape and its rate of change
with axisl distance.

(2)

gt -
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Substitution of equation (2) into equation (1) yields the local
pressure coefficlent

2

— R'2(x)cosea - R'"(x)sin o sin 2a + sinw sin®a
1+ R'(x)

Cp(w,x) =

-2 sin @ cos o R'(x)[R(x)R‘(x) +x - xo]

o0

+ 2L 5in2p sin a@(x)R'(x) + x - Xo]

o0

q 2 2 ( ' e
+ <§-> sin a)E? x)R'(x) + x - xo:l (3)

o0

Considerable simplification is afforded by use of the substitution

VQ—ER(X)R'(X) + X - xo| + sin
G(x) = = (%)

R'(x)cos a

which enables equation (3) to be-rewritten as follows:

2
Cp(w,x) = 2R (x)cosga’@z(x)sin&o - 26(x)sin w + ]:_l

1+ R'2(x)
or
Cplw,x) = 2R'2(x)cosga,@ - G(x)sin “E'E (5)
P 1+ R'Q(x)

where G(x)sinw S1 for R'(x) 20 and where G(x)sinw® 21 for
R'(x) < 0. The conditions on G(x)sin @ insure that the surface region
under consideration is not shielded from the flow. When the surface is
shielded, i.e., G(x)sinw >1 for R'(x) >0 or G(x)sinw <1 for
R'(x) <0, Cp(w,x) 4is, of course, zero. An examination of equation (2)

in conjunction with the substitution of equation (4) and the requirement
that Vy 2 0 readily yields the indicated inequalities. It should be
noted that, for R'(x) = 0, the parameter G(x) is infinite and a more
convenient expression for the pressure coefficient Cp(m,x) is directly

obtainable from equation (3).



When the body of revolution has a flat circular face, the face
pressure predicted by the Newtonian theory may be obtained from equa-
tion (5) by the following substitutions therein: x = O, R(x) = r,

r
R'(x) » w, and G(x) = g The formula for this pressure is given
V, COs a
in coefficient form by:
r 2
Cp,r = 2 coslall - — X sin o (6)
’ Ve, COS a
and is applicable to those regions that are not shielded from the flow,
. . Vo cOs @ . . .
i.e., r sinw<g ———a————. For shielded regions, i.e.,
V, cOs o

r sin ® > —————, Cp,f 1s zero.

a

Another effect that requires consideration is the shielding of
flared aft regicons of the body due to the presence of the forebody. For
example, the lateral surface area of a conical frustum would be com-
pletely exposed to the flow at a sufficiently small « and for g =0
if the frustum was used as the forward section of a body;,; if, however,
the same frustum was positioned as a flared aft section behind a
cylindrical midsection, then part of the frustum would be shielded
from the flow. A later section of the paper treats the problem of
estimating corrections to the calculated forces and moments so as to
account for such shielding effects.

In the calculation of the axial force, normal force, and pitching
moment for an arbitrary body of revolution, there are therefore three
components to be considered: (a) the basic forces and moments associated
with the body, exclusive of forebody shielding effects; (b) corrections
necessitated by forebody shielding effects; and (c) the contribution of
a flat-faced nose shape.

The basic forces and moments (item (a) above) may be expressed in
the following manner:

2 b poalx) :
Cy = - = . g[;l(x) R(X)Cp(w,x)81n w dw dx (7

VOO



1 ~wo(x)
_ 2 2 OR' (x
Cx = 2 j; f - R(x)R' (x)Cp(w,x)dw dx (8)

X

L pap(x) '
Cp = szr \/; L/;l R(x)[?(x)R (x) + x - xé]cp(w,x)sin w dw dx (9)

where 1 1is the overall body length, S and 1y are the reference

area and reference length, respectively, used for nondimensionalizing
purposes, and functions wy(x) and wo(x) are the o limits determined
by the Vi = O velocity boundary and the applicable range of w, i.e.,

- grg w <€ %. Because of symmetry considerations, the multiplicative
factor of 2 accounts for the forces and moments acting on the complete
body.

For body regions that are completely exposed to the flow,

wy(x) = -% and wp(x) = %; for body regions where part of the lower
surface is shielded, wl(x) = arc csc G(x) and wp = g; and for body

regions where part of the upper surface is shielded, wy(x) = -g and

wo(x) = arc csc G(x). Inasmuch as the calculations of Cy, Cy, and Cy
involve (see egs. (7) to (9)) integrations with respect to the variable
w of the quantities Cp(w,x) and Cp(w,x) sin w, it is convenient to
define the following functions of G(x):

) n/2 R'(x) 2 0: G(x) < -
1[6(=)] = fm wee a(x) BOH® <R'(x) <o alx) 2 1> (10)
n/2
Ig[G(xﬂ = f_ﬁ/g Cp(w,x)dw (R'(x) >0: -150a(x) < 1) (11)
arc csc G(x) C. (o, x)dao R'(x) 2 0: G(x) >1 > (12)
156 - f_n/z e R'(x) <0: G(x) S-1
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/2 "(x) 2 0: G(x -1
JlEG(X)] = ];rc sse () Cp(w,x)sin w dw <§'EX; < 0 Géxg g 1> (13)
n/2
JEE}(X)-J = \f_ﬂ/g Cp(w,x)sin @ dw (R'(x) >0: -132a(x) < l) (1%)
arc csc G(x) R'(x) 20: 6(x)>1
73[6(x]] = f_ﬂ/z Opl,x)sin @ dw R'(x) <0: G(x) €-1) (39

where the ranges of R'(x) and G(x) variations are indicated paren-
thetically next to each integral.

Upon integration, and designation of the various 1 and J functions
as simply IE}(XH and JE}(X)J, the following formulas and relations
result:

For 05G(x) S1 and R'(x) >0,

: l_ﬂf_(_x_) sec2a, I[G(xﬂ = n:[GE(x) + 2]
R'2(x) ?
(16)
L+ R0 oy slo(x)] = -2n6(x)
R.Q(x) J

For G(x) >1 and R'(x) >0 or for G(x) S-1 and R'(x) <O,

It

}__LR_‘E.(l). secaa I E}(x):l
R'%(x)

~N
[:2 + G2(xB arc sec-G(x) + 5|—g((£)Ll\/G2(x) -1

1 + R'2(x)

Lo R0 o a(ayare seegla) . 6BG + 2 m T
R'2<x) se J[:G(xs__] 2G(x)arc sec-G(x) 5|G(x)| G=(x) - 1

It

/

(17)
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For G(x) <0 and R'(x) >0 or for G(x) 21 and R'(x) <O,

1fa(x)] = 1[-0(x)]
J[:G(xﬂ -J -G(x:)]

It should be noted that, for R'(x) <0 and -1 <G(x) <1, the
surface region is shielded from the flow (Cp(w,x) = 0) and therefore

both I[G(xﬂ and Jl_—(}(x)__] are zero. For the special cases where
G(x)— #o, a condition which arises when R'(x) = O and/or ‘o.l = g-,

(18)

the following formulas are applicable:

For G(x)- *o and R'(x) =0,

~
IE}r(x):l = g[%(x - Xg) + sin or]2
(19)
I 2
J[G(x)] = ¥ 3,:-‘,3—()( - Xo) + sin a,]
® Y,
For G(x)- iw, |oc|= Z and R'(x) >0 or for G(x)— 3o, Ial =L
and R'(x) <O, :
~
o] - = [ 2
I|a(x)| = 2IR(x)R"(%X) + x - x| +
2[1 + R'2(x)] g’w[ O] m}
(20)
L [ 2?
JIG(x)! == L IR(x)R"(x) + x - x| + a’}
[ ] 3[1 + R'2(x)] é’w O] m J
Equations (7) to (9) may be rewritten in terms of the I[G(x)]
and J [G(x)] functions:
1
oy = - 32; . R(x) J[G(x)]dx (21)
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Cx = éi k/;l R(x)R'(x) I[chj]di (22)
o = = foz ROO[RGOR! (x) + x = %] I[6(x)] ax (23)

For any given body, therefore, the integrands of equations (21) to

(23) may readily be computed for various x-stations and a simple graphical

or numerical integration performed to yield the forces and moments. In
order to facilitate such calculations, design-type charts for the I[G(xﬂ

and J[G(xﬂ functions, computed from equations (16) to (18), are pre-

sented in figures 1 and 2, respectively, which are contained in a pocket
attached to the back cover of this report.

The second component to be considered in the force and moment cal-
culations is (item (b)) the correction necessitated by forebody shielding
effects if applicable to the given body for the specified angle of attack
and pltching velocity. In this connection, it should be noted that an
exact correction would be a function of many variables and thus would
not be useful as a simple design-type procedure. It is also felt that
for most bodies this particular effect is not too significant overall and
thus a calculation to define the maximum correction possible for a simple
shape would be more appropriate.

Consider, then, a flared aft section situated behind an infinite
circular cylinder of radius R, shown in the following sketch:

Sketch (b) sketch (c)

P S
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At an axial location x Dbehind the cylinder, the maximum cross-sectional
periphery shielded by the cylinder is s (see sketch (c)) where

2
By
s = 6R(x) = R(x)arc cos|l - 2
R(x)
or by trigonometric substitution,
R 2
s = 2R(x)arc cos |[1 - b (24)
R(x)

The quantity expresses the maximum percent shielding that may

s
2xR(x)
be present due to the forebody. The following relation exists:

R
E;é%gj =k = 359 arc cos\|1 - <§z§7> (25)

and it is readily apparent that the maximum percent shielding ranges
Ry Ry

from O | —— = 0] to 50 percent | —— =
R(x)

1}. The variation of the param-
R(x)

eter k with the ratio

is shown in figure 3.
R(x)

The parameter k may in turn be related to the integration limit
T
2R L.
(x)<2 “’b> 100

k = 100 = 50 - —= 26
2nR(x) X > P (26)

where

- in|N By \° (27)
ay, = arc sin - <§z;3 7
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Omitting calculation details, the procedure is to derive expressions
for AE[G(X)] and AJ{G(xﬂ through use of equations (10), (12), (13),

and (15) with appropriate changes in the w 1limits of integration so as
to account for the shielding boundary a&,. Corresponding corrections to

the force and moment are then introduced:

CN* = CN + ACN\
CX* = CX + ACX > (28)
Co = Cpy + ACy
S
where
1
ACy = - = 2 R(x)R' (x) AI[G(x)] dx (29)
5r Ja,
1
ACy = - =- 2 R(x) AJ[G(x)] dx (30)
Sr Jq,
and
)
2 2 '
ACh = N g/;l R(x)[R(x)R (x) + x - xo] AJ[G(xﬂ dx (31)

In equations (29) to (31), the integration is performed over that sec-
tion of body length affected by the forebody, herein denoted from 17

to 1. The functions AI[G(ij and AJ[Q(X)] are tabulated as

follows:

v oHE e
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For 0SS G(x) €1 and OSap £,

~
M seca AI[G(x)] = G2(x)(1-2t- - @, + cos wy, sin wo)
R'2(x)
- ba(x)cos ay, + n - 2uy &
5 l
1+ R'2(x) cecla AJ[G(X)] - ,iG (x)cos %(2 + sinzmo)
R'Z(x) >

+ G(x)(wb - cos ay, sin ay, - g-) + cos w;jJ

(32)

For 1 <G(x) <o and 0 < ay < arc csc G(x)

l—;—i;;—x) secq AI[G(X)] = [G2(x) + 2] arc sec-G(x)

+ 3\}G2(x) - 1 - 4G(x)cos ay,

+G2(x)<cosa>bsinu>o-’2l-a>b) - 20y - %

. 2
L1 o] v
G2 (x)cos %(2 + sinzab)
* 3
2G2(x) + 1 N
" a6y VO -2
- G(x)arc sec-G(X)] J

(33)
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For -1SG(x) <0 and -Z<w €0, or -»<G(x)<-1 and

s
5 S
arc csc G(x) Sw, £0,

AI[-G(X ] AI[G(X)]

(3k)

AT [-G(x)] AT [G(x)]

For any other combinations of the parameters @, and G(x), the fore-
body does not give rise to any additional shielding and the correction

factors are zero, that is, AI[G(X] =0 and AJ[G(xﬂ = 0. The varia-
tions of AI{G(xﬂ and AJ[G(X)] with the parameter G(x) are shown

in figures 4 and 5 for several values of maximum percent shielding.
Included in these figures are the basic I[G(xﬂ and J[G(x)] curves

so that the relative importance of the corrections can be assessed. The
corrections ACy, ACx, and ACy, may now be readily obtained for any

given body in accordance with equations (29) to (31) by using the identi-
cal procedure discussed previously for calculating Cy, Cy, and Cp.

Although the corrections AJ[?(XZ] and AﬂWé(Xi] just discussed
are directly applicable to flared aft sections situated behind forebodies
for which R'(x) 2 0, a similar approach utilizing an average or modified
value of Ry could readily be applied (if required) to body shapes with

regions characterized by R'(x) < O.

In the event the body of revolution considered has a flat face, a
third contribution (item (c)) to the force and moments is involved. The
incremental normal force will, of course, be zero but the axial-force
and pitching-moment increments will be finite.

The pressure acting on the flat face is given by equation (6) as

w COS &

2
Cp,r =2 cos2a<l - V_L sin w)

e
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Consider the following sketch:

Shielded area

Vy = O Dboundary for +q
(Ve cos a = qz)

Sketch (d)

If, for convenience, the parsmeter a 1s introduced to denote the
Ccos a
R
q ==
Voo
present for values of |a| 2 1 and the following integral expressions

quantity

, 1t is readily seen that no shielding effects will be

may be written:

R.2-22 2
o,z = L cos“a J[‘ JFV o ( i _E_) &y dz (35)
aRq
VR 2
Cm,f—ucos“f fo (——z—)zdydz (36)
Sply -R aRg

For values of |a| < 1, the equations above apply provided the following

changes in limits are incorporated to account for the shielding boundary:
for q > O, replace upper limit on 2z by aR,, and for q < O, replace
lower limit on 2z Dby aR,.
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The indicated operations have been carried out and the following
closed-form formulas result:

For lal 2 1,

~
CN,r =0
ﬁR02c0s2m 1 + hg?
Cx,£ = —3
* 2a? ? (37)
ﬂR03c052a 1
C = e e——e————
m, f Syl a )
For |a| <1,
'\
CN,f =0
_ Rogcosaa 3(4a2 + 1l)arc cos-'a' + {a‘(2a2 + lB)Vl - a2
%,£=— 35 5 (38)
T 6a’
_ _ & L o2 ) 2
Ro5éosaa 15a arc cos 'a’ TET(éa 9a 8 Vl - a
Cy.t = - :
m, T Spl 2
rér 15a ~

The variations of Cyx ¢ and Cm,f with the parameter a are

shown in figure 6. It should be noted that only positive values of a
need be considered since nyf(a) = Cx’f(—a), and Cm,f(a) = ~Cp,r(-a).

Thus the three contributions to the forces and moments have been
considered: (a) the basic components Cy, Cx, Cp, (b) the forebody

shielding components ACy, ACx, ACy, and (c) the flat-face contri-
butions CN,f: CX,f’ Cm,f' These components are additive,

N, t
Cx,t

Cm,t = Cm + &Cq + Cp £

Cy + ACy + CN,f

Cx + ACy + CX,f (39)

h

A VIO o
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In the event the 1lift coefficient CL and drag coefficient Cp
are desired, they may readily be obtained by the formulas:

CL CN cos o - CX sin a

(40)

Cp =Cy sin o + Cg cos a

For values of o and q in the immediate vicinity of zero, a con-
venient form for evaluating stability derivatives may be obtained from
the equations derived herein; they are presented for general interest
in the appendix.

APPLICATION OF METHOD

In order to illustrate the procedures used in evaluating the aero-
dynamic forces and moments, consider the body of revolution shown in
figure T consisting of a hemispherical nose faired into a cylindrical
midsection followed by a flared aft region composed of two conical
frustums. The equations defining body shape and slope are given in
the figure along with values chosen for aerodynamic parameters { angle

of attack « = 20°, positive pitching él = 0.015 about center of

o)
gravity f? = g). For purposes of convenience, the body length is

chosen as 9 units and the corresponding lengths of other quantities are
indicated.

Sufficient axial stations are chosen (21, indicated by the dots
along the body axis of symmetry) and a value of G(x) computed from
equation (4) for each value of x. For each G(x) value so obtained,

there are read off from figures 1 and 2, respectively, values of the

T )
ILG(X)} and J[G(xﬂ paremeters. (For values of G(x) —» =, simple
computations are made directly from the formulas included in the figures.)
Then in accordance with equations (21), (22), and (23) the functions

R(x)'J{G(X)], R(x)-R'(x)-IiG(x)], and R(x)-[R(x)R'(x) + X - xo]-J[G(xﬂ

are tabulated and plotted against the axial coordinate x as shown in
figure 8. Integration by any suitable means (Simpson's Rule, plani-
meter, etc.) to obtain the areas under the solid-line curves of
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figure 8 and multiplication by the appropriate factors of equations (21),
(22), and (23) yield the following results for the basic forces and
moments:

Cy = 0.7k
Cy = 0.54% (41)
Cm = -0‘55

To calculate the correction due to forebody shielding, that is,
ACyx, OCy, and ACp, values of the parameter k defined by equa-

tion (25) are obtained from figure 3 for those axial stations behind

the cylindrical section. The parameters AI[G(X)] and AJ[G(X)] are

then estimated from figures (4) and (5), respectively, and the calcula-
tion of the incrementsl forces and moment defined by equations (29),
(30), and (31) proceeds in a manner directly analogous to the procedure
described above for the basic contributions. The incremental effects

are shown as dashed lines in figure 8 and result in the following
corrections:

ACy = -0.03
ACy = 0.03 (42)
ACp = -0.02

Inasmuch as the body chosen for illustrative calculations does not
have a flat surface at the nose, the flat-face contributions (eas. (37)
and (38)) are, of course, zerc. Thus in accordance with equations (28)
and (39), the total coefficients are:

Cx,¢ = 0-TL )
Cy,t = 0.57 ? (43)
Cm,t = -0.35

J

SN
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It should be noted that the Newtonlan theory does not account for
either variations in Mach number or for differences in the value of v,
the ratio of specific heats. The theory is strictly valid at Mach
numbers approaching infinity and for 7y = 1. Simple modifications to
the Newtonian theory have been suggested to account for these variations.
As an example for blunt bodies, the Newtonian coefficient might be multi-

y+3 | _ 2
2(y + 1) (y + 3)M2

bodies with attached shocks, the Newtonian values appear to be more
satisfactory. Some discussion pertinent to Newtonian theory modifica-
tions may be found in reference 6.

plied by the ratio (see ref. 5),

. For pointed

CONCLUDING REMARKS

Equations based on Newtonian impact theory have been derived and
a computational procedure developed which enables the determination of
the aerodynamic forces and moments acting on arbitrary bodies of revolu-
tion undergoing either separate or combined angle-of-attack and pitching
motions. The analysis considers variations in angle of attack from -90°
to 90° and allows for both positive and negative pitching velocities of
arbitrary magnitude. The results are also directly applicable to bodies
in either separate or combined sideslip and yawing maneuvers.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., October 28, 1960.
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APPENDIX
CALCULATION OF STABILITY DERIVATIVES

Although the Newtonian theory predicts forces and moments that
are nonlinear with respect to variations in angle of attack and/or
pitching velocity, considerable attention has been given the problem
of calculating stability derivatives, that 1is, rates of change of forces
and moments expressed in nondimensional form (for example, refs. 3
and 7). Inasmuch as the derivatives are conventionally evaluated as
a -0 and g » 0, it is apparent that considerable caution must be
exercised in the application of results so obtained without regard to
nonlinear effects.

The equations for the basic forces and moments derived in the pres-
ent paper may be readily expressed in the form of stability derivatives
by eppropriate differentiation of equations (7), (8), and (9) with the
limits y(x) and wp(x) therein replaced by -n/2 and n/2, respec-

tively, and utilization of the evaluations for Ig[G(xi] and JQ[G(xﬂ
as glven by equation (16). The following formulas result:

1 1
oy = (2N ok f ROOR'(x) g (A1)
« o S o 12
a-0 r 1+R (x)
q -0
o - 3y _ 8 P R(x)R'(x)[R(X)R'(X) tx - Xo] ax  (A2)
q 5 Or Srlr Jo 1 + R'3(x)
2v,,
q—-0
a -0

ax  (A3)

(?C£> Y L R(X)R'(X)[R(X)R'(x) + x - xo]
a -0

Cp = | —m = -
Mg,
do. Sply YO 1+ R'2(x)
g -0

A1 LT \O R o o
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2
' 1 R(x)R'(x) [R(x)R'(x) + x - %,
cmq=—a—C-IL =-8“2f [ ]dx (Ak)
alr splp.2 Yo 1 + R'9(x)
2V
q—0
a—-0
ac
Ox, = <J> =0 (45)
A, a—-0
g-0
0y = X\ -0 (46)
qly
y X
Ve q -0
a -0

At the limit o =0 and/or q = 0, the normal-force coefficient Cy
and the pitching-moment coefficient Cp are both zero, but the axial-
force coefficient Cy 1is finite. A formula for Cyx may be derived
through use of equations (8) and (16) and is given by

(Cx)a;o - Az BQIR' () (AT)

Equations (Al) to (A7) are valid for arbitrary bodies of revolu-
tion and may be readily evaluated by analytical, numerical, or graph-
ical procedures.

In the event the body under consideration has & flat face at the
nose, there are some additional contributions to be considered; these
may be obtained by straightforward differentiations of equations (37)
and are as follows:



2L

5
Q
e’
Hy
]
Y
8/%’
=
~ 1
Q
l
(@]

oC
(CNq)f ) 5 ;2
Ve g—0
a—0
_ (%, s
<Cma)f < Bc,, >cx,—~)0
q-0
3y ¢
(nq) ¢ = ; ;lz )
2Veo q-0
a—-0
_ f
(Cxa'>f ) <Ba,’ >a—>0
g—0
oc
(Cxq)f i __‘);i'_f;
Ve q—-0
-0

where R, 1s the radius at the nose.

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

At the 1limit « = O and/or q = O, the normal-force coefficient
CN ¢ &and the pltching-moment coefficient Cr ,f are both zero, but the

axial-force coefficient is finite and is obtained from equation (37) as

o=
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(cx,f) w0 = 5 (ALk)
=0

Additional increments due to forebody shielding have not been con-
sidered; these effects are felt to be relatively insignificant for
values of o and q at or in the immediate vicinity of zero. The
effects of centrifugal forces in the flow have also been excluded in
the analysis.

In the event stability derivatives are desired for values of «
and/or q significantly different from zero, it is suggested that force
and moment variations with a« and q Dbe obtained by the method of the
present paper so as to emphasize any nonlinear characteristics. The
required slopes may then be estimated by the usual procedures.
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Figures 1 and 2 are contained in g pocket attached to the back
cover of this report.
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Figure 3.- Variation of the parameter Xk with the ratio Rb/R(x)

where k, the maximum percent shielding due to forebody, is
defined by equation (25).
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Ox® = Ox + 8Cx

!

§2“_ aCy = -] R(x)eR'(x) » 8T [6(x) ] ax
5}

AT [~G(x—)] = a1 [6(x)]
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2 a6(x)

Figure 4.- Chart for evaluation of the function AI|G(x)|.
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- ad [6(x)]

1+ R'2(x
R'2(x) cos? a

and 3

« [ox)]

1+ R13(x
R'z(x) cos a
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Figure 5.- Chart for evaluation of the function AJ[G(x)].
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8
—— ROIRGYT [6(x)]

6 == RGIR(D:AT [6(x)]

4._

2_— /

r\\
5 N E B
S D e e [ I
— R(x)J[603]

2+ ——== ROJAT[G()]

df

8

o
-8

—_— [R(x)/?'(z)wl-)é-g'ﬂ(X)'J[G(’O]
——— [ROOR'(x) + x-4] R+ AT [(¥]
_/6._
-24_
-32 | | | | | | |
(0] / 2 3 gi’ 5 6 7 8

Axial station, x

Figure 8.~ Axial variations of several functions obtained for body of

revolution shown in figure 7.
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